PRE-BOARD / XII /MATHEMATICS / 2020-21

Time: 3 Hrs.
M M: 80

General Instructions:

1. This question paper contains two parts A and B. Each part is compulsory. Part A carries $\mathbf{2 4}$ marks and Part B carries 56 marks
2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions
3. Both Part A and Part B have choices.

Part - A:

1. It consists of two sections-I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains $\mathbf{2}$ case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part - B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of $\mathbf{1 0}$ questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 questions of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of $\mathbf{5}$ marks each.
5. Internal choice is provided in $\mathbf{3}$ questions of Section -III, $\mathbf{2}$ questions of Section-IV and $\mathbf{3}$ questions of Section-V. You have to attempt only one of the alternatives in all such questions.
6. Section-V. You have to attempt only one of the alternatives in all such questions.
7. Questions involving graph paper should be done on the answer sheet only.

PART - A

SECTION I

All questions are compulsory. In case of internal choices attempt anyone.

Q1. A relation R_{1} in R is defined as $R_{1}=\left\{(\mathrm{x}, \mathrm{y}): x^{2}+y^{2}=9, x, y \in R\right\}$. Check whether R_{1} is symmetric or not.
Q2.
If $f: R \rightarrow R$ is a function defined as $f(x)=x^{3}+1$. Check whether f is onto or not.
Q3.
A function $f: R-\{0\} \rightarrow R$ is defined as $f(x)=x^{\frac{1}{3}}+\frac{1}{x^{\frac{1}{3}}}$. Check whether the function f is injective or not.
Q4. Find the number of reflective relations on a set $A=\{1, a, b, c\}$.
OR
A relation R in R is defined as $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 2 x-2 y+\sqrt{11}$ is irrational, $x, y \in R\}$. Check whether R is transitive or not.

Q5. Find the value of $\sin ^{-1}(\sin (5))$.
Q6. Using determinants, find the equation of a straight line passing through the points $\left(2, \frac{1}{2}\right) \&\left(3, \frac{1}{3}\right)$.
Q7.
Evaluate: $\int e^{x}\left(\log (x)+\frac{1}{x^{2}}\right) d x$
Q8.
Find the area of the region bounded by the curve $y=\sqrt{x-3}$, the lines $x=4, x=7$ and x-axis.
OR
Find the area of the region curve $\mathrm{y}=e^{x}$, the lines $x=\log _{e}(2), x=\log _{e}(4)$ and x -axis.

Q9. For what value of n is the following a homogeneous differential equation:

$$
y \frac{d y}{d x}=x+\sqrt[3]{x^{3}+y^{n-4}}
$$

Q10. Find a unit vector parallel to the sum of vectors $\hat{i}-\hat{j}-2 \hat{k} \& \hat{i}-\hat{j}+\hat{k}$.
Q11.
Find the projection of $5 \hat{j}-3 \hat{k}$ on $\hat{i}+\hat{j}+\hat{k}$.

OR

Find the area of a parallelogram whose diagonal vectors are represented by $3 \hat{i}-\hat{j}+4 \hat{k}$ and $2 \hat{i}-4 \hat{k}$.
Q12.
If $|\vec{a}|=2$ and $|\vec{b}|=3$, then find the value of $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$.
Q13.
Q14.

Q15.

Q16.
A speaks truth in 70% of the cases and B speaks truth in 60% of the cases. In what percentage they contradict each other in narrating the same statement?

OR

The probability of student A passing an examination is $2 / 7$ and of student B passing is $4 / 7$.Find the probability of at least one of them passing the examination.

SECTION II

Both the Case study-based questions are compulsory. Attempt any 4 sub parts from each question (17-18)
Q17.
A can buoy in the form of a double cone is to be made from two equal circular iron plates such that slant height of buoy is 3 m . (use $\pi=3.14 \mathrm{~m}$)

Assume x m is the radius of the base and 2 y m is the whole height of the buoy.
(i) The relation between x and y is:
a) $y^{2}=9+x^{2}$
b) $x^{2}=9+y^{2}$
c) $y=\sqrt{9-x^{2}}$
d) None of these
(ii) Volume of the buoy in terms of the variable y is:
a) $\frac{2 \pi}{3}\left(9 y-y^{2}\right) m^{3}$
b) $\frac{\pi}{3}\left(9 y-y^{3}\right) m^{3}$
c) $\frac{2 \pi}{3}\left(9 y+y^{3}\right) m^{3}$
d) $\frac{2 \pi}{3}\left(9 y-y^{3}\right) m^{3}$
(iii) Curved surface area of the buoy in terms of the variable y is:
a) $6 \pi \sqrt{9-y^{2}} m^{2}$
b) $6 \pi \sqrt{y^{2}-9} m^{2}$
c) $6 \pi \sqrt{y^{2}+9} m^{2}$
d) None of these
(iv) Height of the buoy when the volume is maximum is:
a) $\sqrt{3} \mathrm{~m}$
b) $2 \sqrt{3} \mathrm{~m}$
c) $4 \sqrt{3} \mathrm{~m}$
d) None of these
(v) Cost to paint the buoy @ ₹ 50 per square metre when the volume is maximum is:
a) ₹ 2308
b) ₹ 2309
c) ₹ 2310
d) None of these

Q18.
An insurance company divides its policy holders into three categories: low risk, moderate risk, and high risk. The low-risk policy holders account for 60% of the total number of people insured by the company. The moderate-risk policy holders account for 30%, and the high-risk policy holders account for 10%. The probabilities that a low-risk, moderate-risk, and high-risk policy holder will file a claim within a given year are respectively $.01, .10$, and .50 .

(i) The conditional probability that policy holder will file a claim within a given year given that policy holder is a high-risk policy holder:
a) 0.05
b) 0.1
c) 0.5
d) None of these
(ii) Probability that low-risk policy holder will file a claim within a given year is:
a) .01
b) .06
c) 0.0006
d) None of these
(iii) The total probability of policy holder will file a claim within a given year is:
a) 0.086
b) 0.087
c) 0.088
d) None of these
(iv) Given that a policy holder files a claim this year, the probability that the person is a high-risk policy holder is:
a) $50 / 43$
b) $25 / 43$
c) $15 / 43$
d) $3 / 43$
(v) Let $\mathrm{E}_{1}=$ Event that person is low-risk policy holder.
$\mathrm{E}_{2}=$ Event that person is moderate risk policy holder.
$\mathrm{E}_{3}=$ Event that person is high risk policy holder.
$A=$ Event that a policy holder will file a claim this year.
The value of $\sum_{k=1}^{3} P\left(E_{k} / A\right)$ is
a) 1
b) $1 / 2$
c) $1 / 3$
d) None of these

Q19. Find all values of a, b, c, for which the matrix A is symmetric:

$$
A=\left[\begin{array}{ccc}
2 & \mathrm{a}-2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}+\mathrm{c} \\
3 & 5 & \mathrm{a}+\mathrm{c} \\
0 & -2 & 7
\end{array}\right]
$$

Construct a matrix of order 2×2 where $\mathrm{a}_{\mathrm{ij}}=\frac{(\mathrm{i}-2 \mathrm{j})^{2}}{2}$.
Find the matrix ' X ' such that $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \cdot X+\left[\begin{array}{cc}-5 & 0 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}3 & -9 \\ 7 & 1\end{array}\right]$.
The function $f(x)=\frac{\log (1+\alpha \mathrm{x})-\log (1-\beta \mathrm{x})}{\mathrm{x}}$ is not defined at $\mathrm{x}=0$. Find the value of $f(0)$ so that $f(x)$ may be continuous.

Find the equation of the tangent to the curve $y=\frac{6 x}{x^{2}-1}$ at the point $(2,4)$.
Q23.

Q24.
Q25.
Q26.

Q27.

Q28.

Q29.
Evaluate: $\int \frac{\sqrt{\cot x}}{\sin x \cos x} d x$
OR
Evaluate: $\int_{2}^{5} \log \left(\frac{x}{7-x}\right) d x$.
Find the area of the region bounded by the curve $y^{2}-6 y+x+5=0$ and y-axis.
Solve: $\sqrt{1-x^{3}} d y=\sqrt{x} d x, y(1)=\pi$.
If $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=2,|\vec{b}|=3$ and $|\vec{c}|=6$, each of these vectors is perpendicular to the sum of other two vectors then find $|\vec{a}+\vec{b}+\vec{c}|$.

Using vector method, prove that the parallelograms lying on the same base and between the same parallels are equal in area.

Suppose we have two urns. Urn I contains 12 green balls, 16 yellow, and 2 red. Urn II contains 6 green balls, 5 yellow, and 4 red. We flip a coin. If a head we draw one ball randomly from Urn I, if a tail we draw one ball randomly from Urn II. Find the probability that yellow ball is drawn.

OR
Two friends X and Y have equal number of sons. There are three tickets for a football match, which are to be distributed among sons. The probability that 2 tickets go to the sons of one and one ticket goes to the son of other is $6 / 7$. Find how many sons each of the two friends have.

SECTION IV

All questions are compulsory. In case of internal choices attempt anyone
A relation R in set of all-natural numbers N is defined as $a R b$ if and only if $\mathrm{a}+\mathrm{b}$ is even. Prove that R is an equivalence Relation. Also write the equivalence class of 1.

Q30.
If $y=x^{\sin (x)}+(\sin (x))^{x}$, then find $\frac{d y}{d x}$.

Show that $f(x)=|x-1|+|x-5|$ is not differentiable at $\mathrm{x}=1$.
If $y=\left(x+\sqrt{x^{2}+1}\right)^{m}$, prove that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-m^{2} y=0$.
Q32.
Determine the intervals in which the function $f(x)=x^{\frac{2}{3}}\left(\frac{5}{2}-x\right)$ is increasing or decreasing.
Q33.
Evaluate: $\int \frac{x^{2}+9}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$..
Q34.
Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Q35.
Solve: $\sin (x) \frac{d y}{d x}+\sin (2 x)=\sin (3 x)$
OR
Solve: $\left(x^{3}+y^{3}\right) d y-x^{2} y d x=0$.

SECTION V

All questions are compulsory. In case of internal choices attempt any one
Q36.

Q37.

Show that the lines $\frac{x-1}{2}=\frac{y+3}{3}=\frac{z-1}{1}=m$ and $\frac{x+1}{2}=\frac{y+14}{5}=\frac{z-8}{-1}=n$ intersect. Find the coordinates of their point of intersection.

OR

Find the distance of the point $(3,-4,5)$ from the plane $2 x+5 y-6 z=16$, measured parallel to the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z+3}{-2}$.

Q38.
Solve the following linear programming problem (L.P.P) graphically.
Minimise $Z=5 x+10 y$ subject to the constraints:
$\mathrm{x}+2 \mathrm{y} \leq 120$
$x+y \geq 60$
$x-2 y \leq 0$
$x \geq 0, y \geq 0$
OR
The corner points of the feasible region determined by the system of linear constraints are as shown below:

Answer each of the following:
(i) Let $Z=3 x-4 y$ be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum value occurs.
 that the maximum value of Z occurs at $B(8 / 3,1 / 3)$ and $C(1,2)$. Also mention the number of optimal solutions in this case.

